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Summary

In this paper the problem of interval estimation of a maximum point of
a quadratic regression function in the case of correlated random errors is
considered. An approximate Student confidence interval for the maximum
point is highly unrobust against autocorrelation (Kozio l and Zieliński,
2003b). In the paper a method for robustification of this interval is
presented. This solution relies on modification of the data after which the
minimum confidence level is close to the nominal one.
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1. Introduction

Consider a quadratic regression model with repeated measurements, i.e.
the model

Yij = β0 + β1xj + β2x
2
j + εij , i = 1, . . . , k, j = 1, . . . ,m,

where i is a number of observations in the j’s measurement point. Assume
that εij are normally distributed random errors with E(εij) = 0, D2(εij) =
σ2 and

E(εi1j1εi2j2) =
{

σ2%|j1−j2| for i1 = i2
0 for i1 6= i2

.

The problem concerns interval estimation of ϕ = −β1/2β2, with β2 < 0,
i.e. the point at which the regression function attains its maximum.
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Under the assumption of independence, (% = 0) of random errors at
least two confidence intervals for ϕ are known: the exact confidence inter-
val and the approximate Student confidence interval (Kozio l and Zieliński,
2003a). The properties of both of these confidence intervals are similar in
the basic model. They have been widely studied by many authors (Buonac-
corsi, 1985; Buonaccorsi and Iyer, 1984; Kozio l and Zieliński, 2003a). For
our investigations we choose the approximate Student confidence interval
because this one always exists.

In many practical applications it appears that the ε’s are not indepen-
dent, for example in models of growth. In Kozio l and Zieliński (2003b) it
was shown that the confidence level of a Student confidence interval is very
sensitive to the autocorrelation of random errors, while its length is quite
stable. The problem is what to do to make the confidence level more stable.

2. Approximate Student Confidence Interval

In matrix notation the considered model is of the form

Y = Xβ + ε, (1)

where Y = (Y11, . . . , Y1m, . . . , Yk1, . . . , Ykm)′ is the vector of observations,
X = 1k ⊗ U with U = [1 xj x2

j ]j=1,...,m is the design matrix, β =
(β0, β1, β2)′ is the vector of regression coefficients and ε = (ε11, . . . , ε1m, . . . ,
εk1, . . . , εkm)′ is the vector of i.i.d random errors. Here 1k denotes a k-
vector of ones. Assume that matrix U is of full rank. If so, there exists
the matrix (X′X)−1. Let us denote the elements of (X′X)−1 by νij , i.e.
(X′X)−1 = [νij ]i,j=0,1,2. Let

β̂ = (X′X)−1X′Y =
1
k

(U′U)−1(1′
k ⊗U′)Y,

and

S2 = Y′(I−X(X′X)−1X′)Y/(n− 3) =
= Y′(I− 1

k1k1′
k ⊗U(U′U)−1U′)Y/(n− 3)

be LSE estimators of β and σ2, respectively (n = km). Assuming that
ε ∼ Nn(0, σ2In) we have

β̂ ∼ N3

(
β, σ2(X′X)−1

)
, (n− 3)S2 ∼ σ2χ2(n− 3),

and β̂ and S2 are stochastically independent. Let ϕ̂ = −β̂1/2β̂2 be the
point estimator of the point ϕ of the regression function.
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The approximate Student confidence interval is based on the fact (Ser-
fling, 1980) that ϕ̂ is asymptotically normal:

ϕ̂ = −β̂1/2β̂2 ∼ AN(ϕ; σ2ω2),

where

ω2 =
4ϕ2ν22 + 4ϕν12 + ν11

(2β2)2
.

Application of the classical Student technique gives the following approxi-
mate confidence interval for ϕ:

(ϕ̂± t(α, n− 3)Sω̂), (2)

where ω̂2 = (4ϕ̂2ν22 + 4ϕ̂ν12 + ν11)/(2β̂2)2 and t(α, n − 3) is the critical
value of t distribution.

The above confidence interval is constructed under the assumption % =
0. Now assume that the correlation matrix of random errors ε is of the
form σ2(Ik ⊗ Σ) with Σ = [%|i−j|]i,j=1,...,m. Such a correlation structure
is typical for AR(1) processes. In Kozio l and Zieliński (2003b) simulation
studies showed that if % > 0, then the confidence level decreases by up to
70% of the nominal level, i.e. the assumed level in the case % = 0. Hence the
confidence interval (2) may be considered as unrobust against correlation.

In what follows a method of robustification of this confidence interval
is presented. Because Σ is p.d. there exists an upper triangle matrix W
such that Σ = W′W. Let V = W−1. The matrix V is of the form

V =
1√

1− %2



√
1− %2 −% 0 0 · · · 0

0 1 −% 0 · · · 0
0 0 1 −% · · · 0
...

...
...

...
...

...
0 0 0 0 · · · 1

 .

Let L = Ik⊗V ′. Our proposition is to use Z = LY instead of Y. Then
the considered model Y = Xβ + ε becomes

Z = LXβ + Lε, (3)

where Z = (Z11, . . . , Z1m, . . . , Zk1, . . . , Zkm)′ is the vector of modified obser-
vations. Matrix U is of full rank, so there exists the matrix ((LX)′(LX))−1 =
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(X′(Ik ⊗Σ−1)X)−1 = 1
k (U′VV ′U)−1. Denote an element of this matrix by

νst, i.e. (X′(Ik ⊗Σ−1)X)−1 = [νst]s,t=0,1,2. Let

β̃ = [(1k ⊗V ′U)′(1k ⊗V ′U)]−1(1k ⊗V ′U)′Z
= 1

k [U′VV ′U]−1(1′
k ⊗U′VV ′)Y,

and

S2 = Z′(Ikm − 1
k

1k1′
k ⊗V ′U(U′VV ′U)−1U′V)Z/(n− 3)

be LSE estimators of β and σ2 respectively (n = km) in model (3). Note
that Lε ∼ Nkm(0, σ2Ikm). Hence

β̃ ∼ N3

(
β,

σ2

k
[U′VV ′U]−1

)
, (n− 3)S2 ∼ σ2χ2(n− 3),

and β̃ and S2 are stochastically independent. It is easy to check that,
although β̃ 6= β̂, ϕ̃ = −β̃1/2β̃2 = ϕ̂.

We construct the Student confidence interval (2) in the modified model.
Because the value of autocorrelation % is unknown, it is estimated by the
popular estimator

r =

1
m−1

m−1∑
j=1

k∑
i=1

(Yij − Ȳ•j)(Yi,j+1 − Ȳ•,j+1)

1
m−1

m−1∑
j=1

√√√√ k∑
i=1

(Yij − Ȳi•)2
k−1∑
i=1

(Yi+1,j − Ȳi+1,•)2

,

where Ȳ•j = 1
k

k∑
i=1

Yij , (j = 1, . . . ,m) and Ȳi• = 1
m

m∑
j=1

Yij , (i = 1, . . . , k).

The above estimator is a modification of the estimators of autocorrelation
coefficient proposed by von Neumann and Durbin-Watson (see: Chow 1983;
Greene 2000).

We investigated the properties of the confidence interval (2). To esti-
mate the confidence level as well as the length the Monte Carlo method
was applied.
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3. Simulation studies

In simulation studies we confine ourselves to the interval x ∈ [−1; 1].
Note that every finite interval for x may be reduced to [−1; 1]. We chose

xi = −1 +
2
9
i, i = 0, 1, . . . , 9,

i.e. ten equally distributed points over the considered interval (m = 10).
Such a choice should model time points which are equidistant (for example
ten weeks). We observe k = 5 courses of the regression function. Hence
we have 5× 10 observations. Also we took σ2 = 0.1. On such observations
we build a confidence interval for the maximum and note its length and
whether it hits a true maximum point. This procedure was repeated 1000
times and as a result we obtained the mean length as well as the empirical
confidence level.

In our simulations we consider the 100 quadratic regression functions
given below:

β2 β1

−0.1 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18
−0.5 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
−1.0 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80
−1.5 0.00 0.30 0.60 0.90 1.20 1.50 1.80 2.10 2.40 2.70
−2.0 0.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60
−2.5 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50
−3.0 0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40
−3.5 0.00 0.70 1.40 2.10 2.80 3.50 4.20 4.90 5.60 6.30
−4.0 0.00 0.80 1.60 2.40 3.20 4.00 4.80 5.60 6.40 7.20
−4.5 0.00 0.90 1.80 2.70 3.60 4.50 5.40 6.30 7.20 8.10
−5.0 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00
xmax 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

The columns contain functions with the same maximum point and of dif-
ferent flatness. The rows contain functions of the same flatness and with
different maximum points. By symmetry we consider only positive maxi-
mum points. The constant β0 is not important and we put it equal to 10.

Also we have to adopt some values for autocorrelation. To enhance our
simulations we consider autocorrelations ranging from −0.9 to 0.9 in steps
of 0.1, i.e. we consider 19 autocorrelation values.
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Figure 1. Empirical confidence level of Student confidence interval.

Figure 2. Empirical length of Student confidence interval.
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4. Results

The results of the simulations are shown in the figures. For presenta-
tion we chose only functions with different maximum points and the same
flatness (β2 = −5). For other functions the results are similar.

The confidence level of the confidence interval was highly unrobust
against autocorrelation (Kozio l and Zieliński, 2003b). If % > 0, then the
confidence level decreases by up to 70% of the nominal level, i.e. the as-
sumed level in the case % = 0. The comparison of confidence level is shown
in Figure 1. Values of autocorrelation are on the X axis, the confidence level
is on the Y axis. The comparison of confidence intervals for different auto-
correlations shows that data modification has affected the confidence level
significantly: the confidence level is close to the nominal one (1−α = 0.95)
for all values of autocorrelation.

The lengths of confidence interval were robust against autocorrelation
(Kozio l and Zieliński, 2003b). The comparison of length of confidence in-
terval is shown in Figure 2. Values of autocorrelation are on the X axis,
and the length of confidence interval is on the Y axis. The comparison of
length of confidence interval for different autocorrelations shows that the
length of the interval is affected by the data modification. The interval
lengths increase. This is a cost of robustification of the confidence level.

The data modification using Cholesky decomposition is a good method
of robustification of approximate Student confidence intervals against au-
tocorrelation.

The results presented were obtained for AR(1) processes. It may be
expected that results for any matrix Σ with known structure should be
similar.
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